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tion which appears ubiquitously throughout mathematics,
science, and engineering. But we shall study it elsewhere.An unconventional numerical method for solving a restrictive and

yet often-encountered class of ordinary differential equations is In general a system of ordinary differential equations
proposed. The method has a crucial, what we call reflexive, property for which f(y) is a polynomial in y, can be transformed
and requires solving one linear system per time-step, but is second- into a big system like (1.1) and (1.2) by introducing a new
order accurate. A systematical and easily implementable scheme is

variables. Unfortunately doing so may end up with anproposed to enhance the computational efficiency of such methods
unstable system, even though the original system is stable.whenever needed. Applications are reported on how the idea can

be applied to solve the Korteweg–de Vries Equation discretized in In this paper, we propose efficient numerical methods
space. Q 1997 Academic Press for solving such a system. Special attention will be given

to how the idea can be applied to solve the discretized
Korteweg–de Vries (KdV) equations.

1. INTRODUCTION

2. REFLEXIVE UPDATING FORMULASVarious applications yield systems of ordinary differen-
tial equations In principle, any one-step method for solving the initial

value problem2 (1.1) yields an updating formula Q(u, g)
which advances g P y(t) to Q(u, g) P y(t 1 u), where udy

dt
5 f(y), y(0) 5 y0 , (1.1)

is the step-size. An updating formula Q(u, g) is reflexive if

with a special property: f(y) is at most quadratic in y, Q(2u, Q(u, g)) 5 g.

f(y) ; A(y, y) 1 By 1 b, (1.2) (It has been called symmetric, reversible, and self-adjoint,
too, but as argued by Kahan [12], these terms are already
overworked, so we prefer the word reflexive.) One examplewhere A(?, ?) is a symmetric tensor, B is a matrix with
is the implicit midpoint rule: Y 5 y 1 uf((y 1 Y)/2).appropriate dimension, and b is a constant vector. Al-

For the system (1.2), there is a readily available reflexivethough a system of this kind looks very restrictive at first
formula obtained by solving a linear system of equationssight, it actually appears often in applications—examples
in Y:including air pollution models [33], many partial differen-

tial equations after spatial discretization by finite differ-
ence, finite element or pseudospectral methods, like the Y 2 y

u
5 F (Y, y) ; A(Y, y) 1 B

Y 1 y
2

1 b. (2.1)Korteweg–de Vries equation [14, 31], the Boussinesq equa-
tion [31], and potentially many others. Another particularly
important example is the matrix differential Riccati equa- Such a formula is not totally new. In fact, the same idea

has been used by many people over years on a variety of
special systems like (1.1) and (1.2), e.g., Kahan [11, 12], Li1 This material is based in part upon work supported from August 1995
[17], Meyer-Spasche and Düchs [19], Mickens [20], Twizell,to January 1997 by a Householder Fellowship in Scientific Computing at

Oak Ridge National Laboratory, supported by the Applied Mathematical Wang, and Price [30], to name a few. What is new here is
Sciences Research Program, Office of Energy Research, United States
Department of Energy Contract DE-AC05-96OR22464 with Lockheed
Martin Energy Research Corp. 2 This is true regardless of what f may be.
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our exploitation of its reflexivity which makes it possible zoidal rule (Y 2 y)/u 5 (f(Y) 1 f(y)/2) for Y, starting
from a first guess y, isto be composed in a simply efficient way to yield higher

order methods; see Section 3.
Equation (2.1) admits another formulation which will

Y P y 1 u SI 2
u

2
Jf(y)D21

f(y).enable us to discover its link to the implicit midpoint rule
(and the trapezoidal rule) and its further generalizations.
Denote by Jf(u) the Jacobian matrix of f(u) evaluated at

In other words, the proposed method (2.1) is just one New-
u, and denote by JA(u) the Jacobian matrix of A(u, u) also

ton iteration applied to the trapezoidal rule.
evaluated at u. It is easy to see that

Proof. It can be verified easily. j

JA(u) 1 B ; Jf (u), As JA(u) ? u ; A(u, u), The formulation (2.2) makes it possible to be extended
to any initial value problems and gives a second-order

since A(u, u) is a symmetric tensor. Equation (2.1) is equiv- formula. But when f is not quadratic, such an extension
alent to fails to yield a reflexive formula and thus the efficient

constructions of higher order approximations to be dis-
cussed in the next section do not apply. Equation (2.2)Y 2 y

u
5

1
2

JA(y) ? Y 1
1
2

BY 1
1
2

By 1 b.
also suggests that the new method is in the family of so-
called Rosenbrock method and thus A-stable [16].

So
Remark. The above treatment to the system (1.1)—

(1.2), where A, B, and b are constants can be easily ex-Y 2 y
u

5
1
2

Jf(y) ? Y 1
1
2

By 1 b tended to cover the case where A, B, and b depend on
time t. More generally, it may be generalized to the system

5
1
2

Jf(y) ? (Y 2 y) 1
1
2

Jf(y) ? y 1
1
2

By 1 b
d
dt Sx

y
D5 Sf1(x, y)

f2(x, y)
D ,

5
1
2

Jf(y) ? (Y 2 y) 1
1
2

JA(y) ? y 1
1
2

By 1
1
2

By 1 b

where
5

1
2

Jf(y) ? (Y 2 y) 1 A(y, y) 1 By 1 b • x9 5 f1(x, y) with frozen y can be solved either exactly
or cheaply by a reflexive method.

5
1
2

Jf(y) ? (Y 2 y) 1 f(y), • f2(x, y) 5 A(x)(y, y) 1 B(x)y 1 b(x).

Then a reflexive method for the whole system can be de-
signed as follows: given x P x(t), and y P y(t),which means that Eq. (2.1) is equivalent to

1. Integrate x9 5 f1(x, y) with frozen y from t 5 t to
t 5 t 1 u/2 to get X̂ P x(t 1 u/2);SI 2

u

2
Jf(y)D (Y 2 y) 5 uf(y). (2.2)

2. Integrate y9 5 f2(X̂, y) from t 5 t to t 5 t 1 u by
the method like (2.1) to get Y P y(t 1 u);

This is the equation that will link the newly proposed 3. Integrate x9 5 f1(x, Y) from t 5 t 1 u/2 to t 5 t 1
method to the implicit midpoint rule and the trapezoidal

u to get X P x(t 1 u).
rule.

PROPOSITION 2.1. 1. One interation of Newton’s 3. ENHANCE THE EFFICIENCY OF SECOND-ORDER
REFLEXIVE UPDATING FORMULAS BYmethod to solve the implicit midpoint rule (Y 2 y)/u 5

f((Y 1 y)/2 for Y, starting from a first guess y, is PALINDROMIC COMPOSITIONS

A consistent and reflexive formula has at least second-
order convergence [9–11, 17] and has other propertiesY P y 1 u SI 2

u

2
Jf(y)D21

f(y).
which allow efficient constructions of higher order approxi-
mations. Assume now g P y(t). By palindromically com-

In other words, the newly proposed method (2.1) is just one posing the existing reflexive updating formula Q(?, ?) to
Newton iteration applied to the implicit midpoint rule. obtain higher order methods we mean that with appropri-

ately chosen integer m and scalar dj’s,2. One iteration of Newton’s method to solve the trape-
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Q(dmu, Q(dm21u, Q(..., Q(d1u, g), ...))) (3.1) de Frutos and Sanz-Serna’s [1] conclusion which is exactly
for the implicit midpoint rule. Similarly, we may present
a phase error analysis, but it will be similar to de Frutosapproximates y(t 1 u) (much) more accurately than Q(u,
and Sanz-Serna’s analysis as well. We shall omit the details.g) does, where di 5 dm2i11 for i 5 1, 2, ..., m. The reader

is referred to Li [17] for a short history of this. Composition
schemes (3.1) that work for any reflexive updating formula 4. NUMERICAL TESTS ON THE
unify previous work on at least three seemingly unre- KORTEWEG–de VRIES EQUATION
lated problems:

We are interested in integrating systems of ordinary
1. Symplectic integrators for separable Hamiltonian differential equations arising from the spatial discretiz-

systems, intensively studied by Ruth [23], Forest and Ruth ations of the well-known Korteweg–de Vries (KdV) equa-
[3], Yoshida [32], McLachlan [18], and many others; tion with smooth solutions. Two types of spatial discretiza-

2. Composition schemes based on the implicit mid- tion will be considered:
point rule due to Sanz-Serna and Abia [25], de Frutos and

1. Finite differences or finite elements. For the purposeSanz-Serna [1];
of illustration of our idea only, we consider here the space

3. Decompositions of exponential operators, mostly discretization suggested by Sanz-Serna and Christie [26].
due to Suzuki [27].

2. Pseudospectral methods.
Kahan and Li [13] give coefficients dj’s for orders as high

Two kinds of reflexive formulas will be compared to seeas 10; see http://www.netlib.org/ode/composition.txt.
how well they solve the discretized equations. One familyHowever, what order one should use depends solely on a
comes from our own methods in Section 2 for quadraticparticular application and generally it is hard to tell. For
differential equations; the other comes from the implicitthe discretized KdV equations that we will be solving,
midpoint rule explored by de Frutos and Sanz-Serna [1].we found fourth-order schemes are good enough, partly
They explained briefly why fourth-order explicit Runge–because errors committed by spatial discretizations make
Kutta methods and the popular backward differentiationit unnecessary to solve the discretized KdV equations with
formulas may be unsuitable for wave problems like thehigher order schemes.
KdV equation. This is also the reason we compare ourWe call (3.1) an m-stage scheme. Notation sIodrJ stands
method here against the implicit midpoint rule studiedfor an I-stage order J schemes. (s1odr2 is the formula Q
in [1].itself.) In the sequel, two schemes will be tested on the

The KdV equation was first proposed in Korteweg anddiscretized KdV equations:
de Vries [14] to describe long waves in water of relatively

1. s3odr4: m 5 3 and d1 5 d3 5 1/(2 2 Ï3 2), d2 5 shallow depth; see also Whitham [31]. It takes the form
2Ï3 2/(2 2 Ï3 2) , 0.

ut 1 6uux 1 uxxx 5 0, (4.1)2. s5odr4: m 5 5 and d1 5 d2 5 d4 5 d5 5 1/(4 2
Ï3 4), d3 5 2Ï3 4/(4 2 Ï3 4).

where u 5 u(x, t), and subscripts ?x and ?x denote partial
Another efficient way to raise the order of reflexive meth- derivatives. Later it was discovered that the equation arises
ods is via extrapolation (see Kahan [11] and Hairer, in a number of other physical phenomena, e.g., ion-acoustic
Nørsett, and Wanner [9]). waves in plasma physics, anharmonic lattices, longitudinal

We now briefly comment on some stability issues associ- dispersive waves in elastic rods, and pressure waves in
ated with the explicitly function-dependent construction liquid gas bubble mixtures.
(2.1). Notice that (2.1), if applied to linear differential We shall report both accuracy tests and long time inte-
systems, yields the implicit midpoint rule and the trapezoi- grations for one soliton solution and collisions of two soli-
dal rule, based on which a natural linear stability theory tons. The KdV equation (4.1) on the infinite interval
may be given for (2.1) and palindromic compositions (3.1).

2y , x 1y possesses
This is done in Li [17]. The conclusion is that, although

One-soliton solutions,(2.1) is A-stable, palindromic compositions (3.1) are not
as long as there are negative dj’s. As a matter of fact, both
linear stability regions for s3odr4 and s5odr4 have a hole3 u(x, t) 5 2k2 sech 2(kx 2 4k2t 2 h)
in the left half plane. This, of course, coincides with

for constants k and h; see Taha and Ablowitz [29]. We
have chosen a solution with k 5 1 and h 5 0:3 The hole for s5odr4 is much smaller and further away to the left

from the origin than the one for s3odr4. So s5odr4 could be considered
more stable. u(x, t) 5 2 sech 2(x 2 4t) for 2y , x , 1y. (4.2)
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It has peak amplitude 2 and velocity 4. It was the most periodic conditions: vj 5 vN1j for j 5 ..., 22, 21, 0, (4.9)
difficult one-soliton solution considered in Nouri and Sloan 1, 2, ... . This makes long time integration possible.
[21] which compared pseudospectral methods for the KdV
equation. It also was adopted as a test example in [1]. Compactly, this system can be written as

Two-soliton solutions,
M

dv
dt

5 f(v),
u(x, t) 5 2(ln f )xx , (4.3)

where M is a (N 1 1) 3 (N 1 1) or N 3 N positive definite
where f 5 1 1 eh1 1 eh2 1 ((k1 2 k2)/(k1 1 k2))2 eh11h2, matrix, depending on which one of (4.8) and (4.9) is used,
hi 5 kix 2 k3

i t 1 h(0)
i for i 5 1, 2. We shall test two sets v(t) is the (N 1 1)- or N-dimensional vector-valued func-

of parameters, as in [29], tion whose jth entry is vj21(t), and f(v) is a vector-valued
function of v. Since f(v) turns out to be at most quadratic

k1 5 1, k2 5 Ï2, h(0)
1 5 0, h(0)

2 5 2Ï2; (4.4) in v, it has a second-order reflexive updating formula as
derived in Section 2 for numerically solving the systemk1 5 1, k2 5 Ï5, h(0)

1 5 0, h(0)
2 5 10.73. (4.5)

(4.7): Given the approximation v to v(t), an approximation
V to v(t 1 u) can be obtained by solving the linear system

Since these u(x, t) approaches zero exponentially as uxu
increases, for short time integrations practical purposes
are served by limiting x to the space interval a 5 220 # SM 2

u

2
J(v)D (V 2 v) 5 uf(v), (4.10)

x # 20 5 b and set u ; 0 for x , a or x . b; in such cases
we check the accuracies of computed solutions against (4.2)

where J(v) is the Jacobian matrix of f(?) evaluated at v.or (4.3) for time interval 0 # t # 2. Notice that such
Notice that this linear system is easy to solve because itsaccuracy checking only makes sense for a short period of
coefficient matrix is pentadiagonal. The method has antime due to the limited space interval considered. We also
advantage over the implicit midpoint rule used in [1] inperformed long time integration on the limited space inter-
that there is no system of nonlinear equations to solve atval. It appears our methods enjoy a remarkable long time
each time step, and no loss of numerical accuracy, as shallstability for the KdV equations.
be clear soon. (4.10) produces a second-order reflexive
updating formula that can be composed or extrapolated4.1. Finite Element Spatial Discretization
to get higher order schemes. There is a limit to the orders

Sanz-Serna and Christie [26] proposed a fourth-order worth considering because no reason exists to solve the
modified Galerkin space discretization: Partition the inter- system (4.7) much more accurately than is compatible with
val [a, b] uniformly by grid points the error of the fourth-order spatial discretization.

xj 5 a 1 jh for j 5 0, 1, ..., N, (4.6) 4.1.1. Tests for One-Soliton Solution

In what follows, we set h 5 0.1 as in [1] and adopt the
where h 5 (b 2 a)/N and N is a positive integer, and let boundary values4 (4.8) in order to compare our results with
vj(t) be approximations to u(xj , t). Then vj(t) satisfies the those reported therein; and thus we have a 401-dimensional
system of ordinary differential equations system (4.7). With this meshsize, the maximum norm error

at the final time t 5 2 in the solution to (4.7) as an approxi-
mation to u(x, 2) in (4.2) has order of magnitude about 1025.1

120
v̇j22 1

26
120

v̇j21 1
66

120
v̇j 1

26
120

v̇j11 1
1

120
v̇j12

In Table I, ‘‘Errors’’ refer to maximum norm errors at
t 5 2 of the numerical solutions as an approximation to

2
1

8h
v2

j22 2
10
8h

v2
j21 1

10
8h

v2
j12 1

1
8h

v2
j12 (4.7) u(x, 2). Such ‘‘Errors’’ may not reflect the distances to the

true solution of the system (4.7), especially when ‘‘Errors’’
have order of magnitude about 1025. We shall return to2

2
2h3 vj22 1

2
2h3 vj21 2

2
2h3 vj11 1

1
2h3 vj12 5 0,

this later. The numbers related to the implicit midpoint
rule are due to de Frutos and Sanz-Serna [1]. The ‘‘Extrap-

for j 5 0, 1, ..., N. Two different boundary treatment olation’’ column contains errors for solutions obtained as
were considered:

4 We found that numerical results are of comparable accuracy if solvedv22 ; v21 ; vN11 ; vN12 ; 0. This makes it (4.8) with the periodic boundary condition (4.9). For this reason, we shall not
include numerical results with (4.9) in our accuracy comparisons.possible for us to do a brief comparison with [1];



320 KAHAN AND LI

TABLE I

Errors

s3odr4 [1] Scheme s3odr4 s5odr4
u No. of steps Mid-point [1] by mid-point (4.10) by (4.10) by (4.10) Extrapolation

5e-2 40 1.6e-2 1.9e-1 1.9e-2 2.1e-3 7.1e-3
2.5e-2 80 3.1e-2 1.1e-3 4.7e-2 1.1e-3 7.2e-5 4.8e-4

1.25e-2 160 7.7e-3 3.4e-5 1.2e-2 6.6e-5 9.4e-5
6.25e-3 320 1.9e-3 2.9e-3

follows: for each u, run the second-order method (4.10) sion n costs about 18n flops and solving a linear system
after decomposition costs 13n flops; each f evaluation costswith step-size u first and then run it with step-size u/2 and

finally extrapolate the two solutions to fourth order. de 11n and each coefficient matrix evaluation 10n. With those
in mind, together with the information in [1, Table I],Frutos and Sanz-Serna [1] did not test s5odr4; they might

not have been aware of it at that time. We do not include distances to u(x, 2) in (4.2) versus numbers of flops is
plotted in Fig. 1, where anything related to midpoint isnumerical results for the very small step-sizes u included

in [1] for two reasons: figured out based on information presented in de Frutos
and Sanz-Serna [1]. Roughly speaking, for the step-sizes1. At very small step-sizes little difference in cost be-
considered, to get about the same accuracy, our methodtween solving a nonlinear system and a linear system; They
(4.10) is about 1.5 times faster than the implicit midpointboth take one iteration.
rule; s3odr4 based on (4.10) is roughly 2.3 to 1.5 times

2. When step-sizes are sufficiently small, high order faster than s3odr4 based on the implicit midpoint rule.
explicit schemes might do better. The speed difference diminishes as step-sizes get smaller
A primitive implementation of (4.10) factorizes its coeffi- because the nonlinear systems involved in the implicit mid-
cient matrix every time it is called. Better implementations point rule require fewer iterations to solve. On the other
are conceivable. In any event, even with this primitive hand, the extrapolation method may be one of the most
implementation, this new method clearly beats schemes efficient ways to go.
based on the implicit midpoint rule that was used in [1], As we remarked, comparing numerical solutions of (4.7)
where one matrix factorization was carried out every time against the true solution u(x, t) of the KdV equation may
the implicit midpoint rule is called. lead us to misinterpret the effectiveness of each scheme

Table I also shows that s5odr4 is substantially more because the error introduced by spatial discretization
accurate than s3odr4 at the same step-size, although both swoops the errors suffered by the higher order schemes
are of order 4. Apparently the two extra stages in s5odr4 when they solve the discretized system (4.7). To overcome
allow it to take larger steps than s3odr4 for achieving this, we have computed an ‘‘exact’’ solution to the system
errors of similar magnitude. To get the error below 1024, (4.7) by using a step-size so small that the ‘‘exact’’ solution
s5odr4 calls upon (4.10) 480 times, s5odr4 only 400 times, comes within at worst about 1027 of the true solution to
which takes about 20% less time. To compare the effective- (4.7). With this, we are able to plot Fig. 2. (Schemes based
ness of the schemes, we plot their errors versus effort in on the implicit midpoint rule are not included.) Figure 2
Fig. 1. Arithmetic operations called flops are counted as shows clearly that the extrapolation method is very com-
follows. The coefficient matrices here are pentadiagonal; petitive for this problem. s5odr4 is less efficient than ex-
LU decomposition5 of a pentadiagonal matrix with dimen- trapolation at the beginning and then gets better as step-

sizes diminish.
5 A flop is defined to be the amount of work of a floating point operation Figure 3 shows favorable linear error growth as functions

[6, p. 19]. One addition or multiplication of two real numbers is counted of t for integration up to t 5 3.
as 1 flop; a division is counted as 5 flops (it takes about that long on We also run composition schemes based (4.10) with the
most commercially significant machines). We consulted [6, pp. 150–151]

periodic boundary condition (4.9) for t as large as 80 with-for flop counts. It turns out the flop counts given there are not accurate
out encountering any stability difficulties. It appears theenough for our application since matrices here have extremely narrow

band width. Our calculation here is based on: LU decomposition for a integration can go much longer. The numerical results
banded matrix of dimension n and with upper bandwidth q and lower show a soliton moving to the right periodically in the sense
bandwidth p costs about p(2q 1 5)n flops (see Algorithm 4.3.1 in [6, pp. that it disappear at x 5 b 5 20 but reappear at x 5 a 5150]); then band forward substitution (column version) costs about 2pn

220. To save pages, we decide not to say any more thanflops, and band back substitution (column version) costs about (2q 1

5)n flops (see Algorithm 4.3.2 and Algorithm 4.3.3 in [6, pp. 150]). this, but shall report numerical results of long time integra-
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FIG. 1. Distances to u(x, 2) in (4.2) versus costs for solving the KdV equation via finite element spatial discretization.

FIG. 2. Distances to the true solution of the discretized system (4.7) versus costs.



FIG. 3. Temporal changes of errors against one-soliton u(x, t) in (4.2). Compositions are based on (4.10). The errors behave linearly in time t.
Each figure on the left and its corresponding one on the right plot the same data but with MATLAB’s plot and semilogy, respectively.

322
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FIG. 4. Long time integration of the spatially discretized KdV equation by finite element method for collisions of two solitons with parameters
(4.4) (similarly with parameters (4.5)).

tions for collisions of two solitons which appear to be more parison to finite differences or finite elements, but it works
much better when it works. Kreiss and Oliger [15] firstinteresting than one-soliton solutions.
introduced the pseudospectral method for hyperbolic

4.1.2. Collisions of Two Solitons equations. Early development of its basic theory can be
found in Orszag [22], Fornberg [4], Gottlieb and Orszag

The accuracy of numerical results against two-soliton
[7], and more recently Gottlieb and Turkel [8], Tadmore

(4.3) are always good for t not too big, as expected. So we
[28], and Fornberg [5].

shall not go into detail in that matter. What we are inter-
Let us briefly describe the pseudospectral method. The

ested the most is to see if the newly proposed methods
basic idea is to interpolate a periodic function g(x) by

run into any stability difficulties for long time integrations.
trignometric functions. Here is one way to do it: Suppose

For this purpose, we run schemes s1odr2, s3odr4, and
g(x) is periodic on the interval [a, b], so g(a) 5 g(b). Lets5odr4 based on (4.10) with the periodic boundary condi-
N be a positive integer, and let xj 5 a 1 j(b 2 a)/N for

tion (4.9) for t up to 80 with u 5 0.1. No stability difficulties
j 5 0, 1, ..., N. Then the discrete Fourier transformation

have occurred. Figure 4 samples numerical solutions that
of the sequence of values g(xj) is given by a sequence

could be obtained by any one of the three schemes at four
different times.

ĝ(p) 5 ON21

j50
g(xj)e22fijp/N for 2N/2 # p , N/2. (i 5 Ï21)

4.2. Discretization by the Pseudospectral Method
(4.11)

The pseudospectral method is an alternative to finite
differences and finite elements for certain classes of partial Accordingly, the inverse discrete Fourier transformation

recovers g(xj):differential equations. Its applicability is restricted in com-
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spatial discretization by the pseudospectral method can be
g(xj) 5

1
N ON/221

p52N/2
ĝ(p)e2fip(xj2a)/b2a) for j 5 0, 1, ..., N. written as

(4.12)
dv
dt

1 6F 21LF
1
2

v2 1 F 21L3Fv 5 0, (4.15)
For this reason, the trigonometric interpolation PNg is then
given by

where v2 should be interpreted entry-wise. This form again
enables us to derive a reflexive method with no systems

PNg(x) 5
1
N ON/221

p52N/2
ĝ(p)e2fip(x2a)/(b2a)

(4.13)
of nonlinear equations involved. Given the approximation
v to v(t), an approximation V to v(t 1 u) can be obtained
by solving a linear system,

5
1
N ON21

j50
g(xj) ON/221

p52N/2
e2fip[(x2a)/(b2a)2j/N].

SI 2
u

2
J(v)D (V 2 v) 5 uf(v), (4.16)

It is easy to see that PNg(xj) 5 g(xj). The derivatives of
g(x) can be approximated by the derivatives of PNg(x):

where f(v) 5 2(6F 21LF As v2 1 F 21L3Fv), and J(v) is the
Jacobian matrix of f(?) evaluated at v,

(PNg)(n)(xj)5
1
N ON21

j50
g(xj) ON/221

p52N/2

S 2fip
b2aDn

e2fip[(xj2a)/(b2a)2j/N],

J(v) 5 26F 21L diag(v) 2 F 21L3F.

5
1
N ON/221

p52N/2
e2fip(xj2a)/(b2a) S 2fip

b2aDn ON21

j50
g(xj)e22fijp/N. Unfortunately, it is a full matrix, so is the coefficient matrix

in (4.16). Premultiplying the two sides of (4.16) by F yields(4.14)

(F 1 u3LF diag(v) 1 u As L3F)(V 2 v) 5 2u(3LFv2 1 L3Fv).Set g 5 e22fi/N and define an N 3 N matrix F whose
(4.17)(k, ,) entry is g(k2N/221)p(,21). Denote g 5 (g(x0),

g(x1), ..., g(xN21))T and ĝ 5 (ĝ(2N/2), ĝ(2N/2 1 1), ...,
Applying a direct solver requires work O(N3) at each timeĝ(N/2 2 1))T. Equations (4.11) and (4.12) read as6

step, which is too expensive; but because of its special form
there are iterative methods which solve this linear systemĝ 5 Fg, g 5 F 21ĝ,
cheaply. Two particularly simple-minded iteration meth-
ods can be obtained from the rearrangementsand the derivative vector (g(n)(x0), g(n)(x1), ..., g(n)(xN21))T

is approximated by (see (4.14))
(I 1 u As L3)F(V 2 v) 5 2u3LF diag(v)F 21F(V 2 v)

(4.18)F 21LnFg, 2 u(3LFv2 1 L3Fv),

where and

(I 1 u3Lh 1 u As L3)F(V 2 v)L 5 diag S2
2fi

b 2 a
N
2

, 2
2fi

b 2 a SN
2

2 1D , ...,
5 2u3LF(diag(v) 2 hI) (4.19)

F 21F(V 2 v) 2 u(3LFv2 1 L3Fv),21, 0, 1, ...,
2fi

b 2 a SN
2

2 1DD .

where h is the average of the entries of v. (Notice that the
diagonal entries of F diag(v)F 21 are equal to h). How toLet us go back to the KdV equation. For the case we

mentioned above, a 5 2L, b 5 L, and L 5 20. Although solve the linear system (4.17) is of independent interest.
Later, we will present an implementation using GMRESthe functions involved are not really periodic, they can be

approximated this way. Again, we work with the spatial (see Saad and Schultz [24]).
De Frutos and Sanz-Serna [1] proposed the implicit mid-grid hxjj as defined by (4.6); but now v0(t) ; vN(t) and

the vector-valued function v(t) is of length N always. The point rule to solve the system (4.15), and thus had to solve
a system of nonlinear equations at each time step. Unfortu-
nately, the Jacobian matrix associated with the system is

6 The matrix–vector product Fg can be realized via a fast Fourier
full, instead of Newton iteration, de Frutos and Sanz-Sernatransformation (FFT) and the product F 21ĝ via inverse fast Fourier trans-
designed a functional iteration which requires about oneformation (IFFT). In the language of MATLAB, they can be realized

by fftshift(fft(g)) and ifft(fftshift(ĝ)), respectively. pair of FFT/IFFT per iteration.



UNCONVENTIONAL SCHEMES FOR ODES 325

Our later implementation of GMRES shows our updat- tion, let us reformulate the system (4.17) into the form
that we will actually use in our implementation. Seting formula is cheaper for u not too small. When u gets

very small GMRES provides little help, because simple
D1 5 (I 1 u As L3)21u3L, D2 5 (I 1 u As L3)21uL3.iterations based on either rearrangement (4.18) or (4.19)

are then good enough for quick convergence. D1 and D2 should be computed prior to entering
GMRES(m). Then the system takes the form

4.3. Numerical Results with GMRES
(I 1 V)x 5 b, (4.21)

Let us briefly review GMRES, which stands for general-
where b 5 2D1Fv2 2 D2Fv is precomputed, and V 5 D1Fized minimal residual algorithms, for solving nonsymmetric
diag(v)F 21 is kept in this factored form, and x 5 F(V 2linear systems. In particular, we are interested in using
v) is to be found. Counting as Demmel [2] did, we findGMRES(m) with no restart to solve a linear system Ax 5 b.
FFT in complex arithmetic costs about 5N log2 N and IFFT

ALGORITHM GMRES(m).
costs 2N more. So a matrix–vector multiplication in our

1. Choose an initial guess x0 , compute7 r0 5 b 2 Ax0 ,
case costs 2 3 5N log2 N 1 2N 1 2 3 6N 1 2N 5 16N 1

b 5 ir0i, and q1 5 r0/b;
10N log2 N flops; therefore the straightforward way of

2. For j 5 1, 2, ..., m do;
computing a residual in our case costs 18N 1 10N log2 N.

q̂ j11 5 Aq j ; The flop ratio
For i 5 1, 2, ..., j do:

hij 5 q*i q̂ j11 ; q̂ j11 5 q̂ j11 2 hijqi ; 18N 1 10N log2 N
(8m 1 10)N 1 8m(m 1 1)enddo;

hj11j 5 iq̂ j11i; q j11 5 q̂ j11/hj11j ;
is plotted for N 5 128 and N 5 256 with m running fromenddo;
1 to 13 in Fig. 5. The picture shows that it is worthwhile3. Solve for ym which minimize ibe1 2 Hmyi, where
to use (4.20) for m # 9 when N 5 128 and for m # 10Hm 5 (hij) is (m 1 1) 3 m;
when N 5 256. In our tests, m does satisfy these bounds.4. Take xm 5 x0 1 Qmym as an approximation solution to

Our second improvement to GMRES is again to utilizethe system Ax5 b, where Qm 5 (q1 , q2 , ..., qm).
the last q-vector qm11 to improve xm . The idea is that simple

GMRES(m) [24] in its most general form has a restart iterations based on either (4.18) or (4.19) will improve a
mechanism, namely after Step 4 residual rm 5 b 2 Axm is given approximation for reasonable u ; and it turns out for
computed and checked; if a prescribed tolerance is satisfied step-sizes we are interested in these simple iterations will
then stop, else set x0 5 xm and q1 5 rm/irmi and go back reduce residuals by at least about Ag and much more when
to Step 2. In our case, this restart mechanism will not step-size gets smaller. We observed that (4.19) is a little bit
be considered. better than (4.18). So what we do is: separate the diagonal

Let us now explain two improvements to GMRES(m) and off-diagonal entries of I 1 V as I 1 V 5 D 1 B; it can
in our particular case. (It may apply to some other cases be seen that D 5 I 1 hD1 , where h is the average of the
as well.) Notice that GMRES(m) requires m 1 1 matrix– entries of v; rewrite Eq. (4.21) into Dx 5 2Bx 1 b; define
vector multiplications; and the last matrix–vector multipli- new improved approximation xnew by xnew 5 xm 1 (I 1
cation to get q̂m11 is not fully used in the sense that only hD1)21rm since
hm11m is incorporated to get ym . It follows from Step 4 that

Dxnew 5 2Bxm 1 b ⇒ D(xnew 2 xm) 5 b 2 (D 1 B)xm 5 rm .
Axm 5 Ax0 1 VQmym 5 Ax0 1 Qm11Hmym .

Lastly, we point out our initial guess x0 to the system
(4.21) is gotten either by quadratic interpolations or bySubtracting b from these equations gives
the leap-frog-like method,9 depending on which is more

rm 5 r0 5 Qm11Hmym. (4.20)
9 The leap-frog method for the system of ordinary differential equations

y9 5 f(y) isComputing rm this way costs about (m 1 1)8m 1
N8(m 1 1) 1 2N 5 (8m 1 10)N 1 8m(m 1 1) flops.8 On yn11 2 yn21 5 2uf(yn), (4.22)
the other hand, the cost of computing directly rm 5 b 2
Axm depends on that of computing Axm . Before we count where yn P y(t0 1 nu), the true solution at time tn 5 t0 1 nu. In the case

when step-size varies, i.e., tn11 2 tn depends on n, one can construct thethe number of flops for doing a matrix–vector multiplica-
following second-order scheme,

cyn11 2 (c 2 1/c)yn 2 (1/c)yn21 5 (tn11 2 tn21)f(yn), (4.23)7 ixi here is the Euclidean length of vector x. The superscript * denotes
complex conjugate transpose.

where c 5 (tn 2 tn21)/(tn11 2 tn). In the constant step-size case, c 5 18 One multiplication of two complex numbers takes 6 flops, and
and thus (4.23) degenerates to (4.22).addition/subtraction 2 flops.
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FIG. 5. The ratio [18N 1 10N log2 N]/(8m 1 10)N 1 8m(m 1 1)] as m varies.

convenient to invoke at various points in the program. 4.3.1. Tests for One-Soliton Solution
Both guesses provide approximations with errors of order Tables II and III list our numerical results. The residual
O(u3). (It is conceivable that with quadratic interpolations columns refer to the maximums among all 2-norms of resid-
both x0 and F 21x0 could be available without doing any uals for xnew for all linear systems involved in a particular
FFT/IFFT and thus the first residual vector could be com- scheme. The values m are for GMRES(m).
puted using one IFFT in addition to some O(N) flops.) Figure 6 plots distances to u(x, 2) in (4.2) versus costs

Roughly speaking, using GMRES(m) to solve the system in the numbers of pairs of FFT/IFFT operations for the
(4.21) costs about m 1 2 pairs of FFT/IFFT operations. case N 5 128. Information regarding the implicit midpoint
As we just commented, if quadratic interpolations were rule is due to [1, Table II]. Schemes based on the newly
always used for initial guesses, cost may be reduced to proposed method are more efficient than schemes based
m 1 1.5 pairs of FFT/IFFT operations. For the moment, on the implicit midpoint rule at larger step-sizes and gradu-
we count costs as m 1 2 pairs of FFT/IFFT operations for ally the speed difference diminishes as step-sizes decrease.
using GMRES(m) to solve the system (4.21). Our second-order scheme starts by almost twice as fast as

TABLE II

Errors for N 5 128

Scheme (4.16) s3odr4 by (4.16) s5odr4 by (4.16)

u No. of steps Error m Residual Error m Residual Error m Residual

1.6e-2 125 2e-2 1 4e-4 2e-4 4 8e-6 7e-6 3 2e-7
8.0e-3 250 5e-3 1 3e-5 8e-6 3 2e-6 2e-6 2 1e-7
4.0e-3 500 1e-3 0 4e-5 3e-6 2 4e-7
2.0e-3 1000 3e-4 0 3e-6
1.0e3 2000 8e-5 0 3e-7
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TABLE III

Errors for N 5 256

Scheme (4.16) s3odr4 by (4.16) s5odr4 by (4.16)

u No. of steps Error m Residual Error m Residual Error m Residual

1.6e-2 125 2e-2 1 9e-04 2e-04 4 2e-05 9e-06 3 4e-07
8.0e-3 250 5e-3 1 5e-05 1e-05 4 3e-07 4e-07 3 2e-08
4.0e-3 500 1e-3 1 3e-06 9e-07 3 5e-08 2e-08 2 9e-09
2.0e-3 1000 3e-4 1 1e-07 8e-08 3 1e-09 73-10 2 2e-10
1.0e-3 2000 8e-5 0 1e-07 7e-09 2 7e-10 6e-10 1 2e-10
5.0e-4 4000 2e-5 0 8e-09 4e-10 2 2e-11
2.5e-4 8000 5e-6 0 5e-10 3e-10 1 2e-11

the implicit midpoint rule and then goes at about the same simple functional iterations as step-sizes get much smaller.
For u 5 2.0e 2 3 cand u 5 1.0e 2 3, our second-orderspeed as step-sizes get smaller. Our s3odr4 is 1.5 to 1.2

times faster than s3odr4 based on the implicit midpoint scheme is about 1.2 times faster than the implicit midpoint
rule. Our s3odr4 is from 2 to 1.2 times faster than s3odr4rule. Figure 7 plots distances to u(x, 2) in (4.2) versus costs

in the numbers of pairs of FFT/IFFT operations for the based on the implicit midpoint rule for the first three u’s
in Table III. Our s5odr4 seems to be the only favorablecase N 5 256. Information regarding the implicit midpoint

rule is due to [1, Table III]. Again, schemes based on the choice for u 5 1.6e 2 2. For other u’s, our current imple-
mentation with GMRES does not as well for reasons ad-newly proposed method are more efficient than schemes

based on the implicit midpoint rule at larger step-sizes. duced above.
Figure 8 shows temporal changes of errors for integra-Our schemes become less favorable choices at smaller step-

sizes. This is no surprise and due entirely to the fact that tion up to t 5 3. We see that errors grow very slowly. We
also see working with the limited space interval [220, 20]we still use GMRES, which becomes less efficient than

FIG. 6. Distances to u(x, 2) in (4.2) versus costs (in the numbers of pairs of FFT/IFFT).
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FIG. 7. Distances to u(x, 2) in (4.2) versus costs (in the numbers of pairs of FFT/IFFT).

produces poor approximation for large t to the true one- and yet often encountered kind of differential equations.
The method requires no nonlinear equations to solve, issoliton (4.2) which moves at a constant speed to the right

towards infinity. Because of the limited space interval and of second-order accuracy and, most importantly, reflexive.
A systematical scheme is proposed to enhance the compu-the periodic boundary condition, numerically we actually

see a soliton moving to the right periodically. tational efficiency of such methods. Numerical experiments
show that the method is suitable for smooth solutions andIt worth noting that the numerical tests in [1] stopped

prematurally in their iteratively solving nonlinear equa- significantly faster than the implicit midpoint rule advo-
cated by de Frutos and Sanz-Serna [1]. When high accuracytions from the implicit midpoint rule for the case N 5 256.

Such premature stops hurt the numerical accuracy when is required, the enhanced schemes s3odr4 and s5odr4
shall be used. It appears even though both s3odr4 andtime step-sizes were small. In fact, for u 5 1.0e 2 3, s3odr4

in [1] should compute a solution at t 5 2 with maximum s5odr4 are of order 4 accuracy and s5odr4 takes two more
stages than s3odr4, in terms of computational efficiencynorm error about O(10210), had their iteratively solving

nonlinear equations been properly stopped, but the error s5odr4 may do better. Higher order palindromic composi-
tion schemes are not considered here to integrate spatiallyreported in [1] was O(1028).
discretized KdV equations because no reason exists to
solve the discretized systems far more accurately than4.3.2. Collisions of Two Solitons
is compatible with the error committed by spatial dis-

Long time integrations for collisions of two solitons were cretization. Also we looked into a comparable way—
also conducted. Our methods turn out to work pretty well extrapolation—to increase the order of the method. Our
without running into any stability difficulties. Figure 9 sam- new methods appear to have no difficulties in long time
ples numerical solutions that could be obtained by any one integration for the spatially discretized KdV equations with
of s1odr2, s3odr4, or s5odr4 at four different times. periodic boundary conditions.
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FIG. 8. Temporal changes of errors against one-soliton u(x, t) in (4.2). Compositions are based on (4.16). The errors behave favorably for t not
too big, as expected, as t increases. The suddenly rapid error growth for s3odr4 and s5odr4 when N 5 256 and when t is slightly over 2 is due to
the limited space interval [220, 20] we used; while the exact one-soliton always moves to the right towards infinity.
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FIG. 9. Long time integration of the spatially discretized KdV equation by pseudospectral method for collisions of two solitons with parameters
(4.5), and N 5 128, u 5 0.02 (similarly with parameters (4.4)).
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